AISSMS College of Engineering, Pune Department of Electrical Engineering Academic year:2018-19 Term I Subject: Power Electronics Class: TE Electrical Date: 29/08/2018

Activity: Use Of ICT (Smart board & Presentation)

Smart Board is used to explain the construction and working of DIAC and TRIAC.

POWER ELECTRONICS (TE ELECTRICAL) 2008 COURSE LEARNING BEYOND SYLLABUS

Title : PWM BASED THREE PHASE INVERTER

Aim: To design a three phase inverter based on sinusoidal pulse width modulation using MATLAB

Theory:

Sinusoidal-Pulse-Width-Modulation (SPWM)

In sinusoidal pulse width modulation there are multiple pulses per half-cycle and the width of the each pulse is varied with respect to the sine wave magnitude corresponding to that duration. Fig 4(c) shows the gating signals and output voltage of SPWM with unipolar switching. In this scheme, the switches in the two legs of the full-bridge inverter are not switched simultaneously, as in the bi-polar scheme. In this unipolar scheme the legs R, Y and B of the full-bridge inverter are controlled separately by comparing carrier triangular wave v_{car} with the three control sinusoidal signals v_{c_R} , v_{c_Y} and v_{c_B} respectively which are displaced by 120°. This SPWM is generally used in industrial applications. The number of pulses per half-

cycle depends upon the ratio of the frequency of carrier signal (f_c) to the modulating sinusoidal signal. The frequency of control signal or the modulating signal sets the inverter output frequency f_o and the peak magnitude of control signal controls the modulation index m_a which in turn controls the rms output voltage.

The amplitude modulation index is defined as

ma=Vc/Vcar

where, Vc = peak magnitude of control signal (modulating sine wave).

Vcar = peak magnitude of carrier signal (triangular signal). The *frequency modulation ratio* is defined as

mf=fcar/fc

where, fc = frequency of control signal (sine signal).

Procedure:

- 1) Open MATLAB 6.5 and go to simulink library browser.
- 2) Open new model file.
- 3) Go to Simpower system blockset in simulink browser.
- 4) In that, go to power electronic library.
- 5) Drag universal bridge in model file. Open universal bridge block and set the ABC as output.
- 6) Connect DC source (from sources library) to universal bridge and set DC voltage to 100V.
- 7) Connect series RLC load (from elements library) to output of universal bridge and set voltage to 100V rms, frequency to 50Hz, active power to 1000W, inductive reactive power to 10 VAR. And capacitive reactive power to 0 VAR.
- 8) Connect one voltage measurement block and current measurement block (from measurement block) to measure the line voltage and line current.
- 9) Connect output of voltage and current measurement to scope. Scope is available in simulink-sinks. Set the number of axis is equal to 2.
- 10) Set simulation parameter as stop time = 2.00 Solver option = ode 15s stiff/NDF.
- 11) Start the simulation and observe the waveforms.
- 12) Increase the inductive load from 10 Var to 1000 Var and see effect on waveforms.

\When Load is 1000W and 1000 VAr

Conclusion:

References:

- 1. Power Electronics by M.H. Rashid, Prentice Hall of India.
- 2.. Power Electronics by M.D.Singh and Khanchandani
- 3. Power Electronics by Ned Mohan

Hopad Department of Electrical Engineering AISSMS College of Engineering, Pune

ICT Tool - PSIM

POWER ELECTRONICS (TE ELECTRICAL) LEARNING BEYOND SYLLABUS

Title : 1 PHASE AC VOLTAGE CONTROLLER

Aim : To design a single phase AC Voltage Controller using PSIM/MATLAB

Theory:

The basic power circuit of a single-phase ac-ac voltage controller is composed of a pair of SCRs connected back-to-back (also known as inverse-parallel or antiparallel) between the ac supply and the load. This connection provides a bidirectional full-wave symmetrical control and the SCR pair can be replaced by a Triac With phase control, the switches conduct the load current for a chosen period of each input cycle of voltage and with on/off control the switches connect the load either for a few cycles of input voltage and disconnect it for the next few cycles (integral cycle control) or the switches are turned on and off several times within alternate half-cycles of input voltage (ac chopper or PWM ac voltage controller). For a full-wave, symmetrical phase control, the SCRs T1 and T2 are gated at α and ($\Pi + \alpha$) respectively, from the zero crossing of the input voltage and by varying α , the power flow to the load is controlled through voltage control in alternate half-cycles. As long as one SCR is carrying current, the other SCR remains reverse-biased by the voltage drop across the conducting SCR. The principle of operation in each half-cycle is similar to that of the controlled half-wave rectifier.

Model Graph:

Procedure:

- 1. Open the PSIM/MATLAB and built a new file in it.
- 2. By using SCRs/MOSFETs /IGBTs construct a single phase AC Voltage Controller as shown in the figure.
- 3. Give pulse sequence to both the switches.
- 4. Run the simulation and see the results in SimView/Scope window.

Conclusion:

References:

Power Electronics by M.H. Rashid, Prentice Hall of India.
 Power Electronics by M.D.Singh and Khanchandani
 Power Electronics by Ned Mohan

Experiment No. 1: Computer Program for 1D bar using linear elements. Show the Variation of Stress and Strain.

AIM:

To determine stress and displacement in bar

Hardware required:

1. I5 Intel processor.

- 2. 4 GB RAM.
- 3. VGA color monitor.
- 4. Color printer

Software required:

1. ANSYS APDL

2. MATLAB

Problem Statement:

Find the Stresses developed in a component with cross section area of 1 cm^2 and length of 1 cm. Consider 20 elements and a force of 1/20N is being applied axially on each element.

MATLAB Code:

```
% One dimensional finite element program
% Simulation and Modeling 345
% INPUT DATA
% this data automatically describes a line of 2-node elements
% with support conditions at both ends and a uniform load; the
% number of elements can be varied by changing numele
clear;
clc;
close all;
                                  %closes all open Figure windows
disp('This is a general Matlab code for a 1D rod.');
disp('This program can be edited to solve a number of suitable problems');
numele=20;
                                  % number of elements
numnod=numele+1;
                                  % number of nodes (special case for 1D
problem)
x= 0:1/numele:1;
                                 % x-coordinates of nodes
node= [1:numele; 2:numele+1]; % node stores the nodes of all elements
area=[1*ones(1,numele)]; % area of each element
area=[1*ones(1,numele)]; % area of each element
young=[1E7*ones(1,numele)]; % Young's modulus of each element
% support conditions, ifix(i)=1 if node i is fixed, else zero
ifix=[1, zeros(1, numele)];
ifix(numnod)=0;
                                  %change the BC on last node; 1 = fixed, 0 =
free
force=[1/numele*ones(1,numnod)];% applied external forces on nodes
% BELOW IS THE MACHINERY OF THE FEM METHOD
% DO NOT CHANGE - SKIP TO THE PLOTTING PART
bigk=[zeros(numnod,numnod)]; % zero bigk matrix to prepare for assembly
for e=1:numele
                                          % loop over elements
    length=x(node(2,e))-x(node(1,e));
                                          % compute element length
    c=young(e) *area(e) /length;
                                          % "spring stiffness" for each rod
    ke=[c,-c;-c,c];
                                          % compute element stiffness%
    % now assemble ke into bigk
    bigk(node(1,e),node(1,e))=bigk(node(1,e),node(1,e))+ke(1,1);
    bigk(node(1,e), node(2,e)) = bigk(node(1,e), node(2,e)) + ke(1,2);
    bigk(node(2,e),node(1,e))=bigk(node(2,e),node(1,e))+ke(2,1);
    bigk(node(2,e), node(2,e)) = bigk(node(2,e), node(2,e)) + ke(2,2);
end
% support conditions (boundary conditions)
for n=1:numnod
    if (ifix(n) == 1)
        bigk(n,n)=1E+30;
                                         % math trick to account for fixed BC
        force (n) = 0;
    end
end
disp=force/bigk;
                                         % SOLVE [F]=[K][D] FOR THE NODAL
DISPLACEMENTS
subplot(211), plot(x,disp,'*')
                                           % plot displacements
title('Displacements calculated via FEM');
```

```
ylabel('displacement')
% compute stresses
for e=1:numele
                                             % this loops over the number of
elements
    length=x(node(2,e))-x(node(1,e));
                                            % compute element length
    elong=disp(node(2,e))-disp(node(1,e)); % elongation of each element
    stress(2*e-1)=young(e)*elong/length;
                                          % to plot, calculate the "stress"
at each node
    stress(2*e) = stress(2*e-1);
                                             % stress in each element is
uniform
    xx(2*e-1) = x(node(1,e));
    xx(2*e) = x(node(2, e));
end
subplot(212)
plot(xx,stress,'*-') % plot the FEM stresses (constant stress element)
title('Stresses calculated via FEM');
xlabel('x position')
ylabel('Stresses')
```

MATLAB Result:

FINITE ELEMENT ANALYSIS

Result from Ansys: Displacement:

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM

1 0.0000 2 0.52500E-07 3 0.50000E-07 4 0.97500E-07 5 0.14250E-07 6 0.18500E-07 7 0.22500E-07 8 0.26250E-07 9 0.29750E-07 10 0.33000E-07 11 0.36000E-07 12 0.38750E-07 13 0.41250E-07 14 0.43500E-07 15 0.45500E-07 16 0.47250E-07 17 0.48750E-07 18 0.50000E-07 19 0.51000E-07 20 0.51750E-07 21 0.52250E-07	NODE	UX
2 0.52500E-0 3 0.50000E-0 4 0.97500E-0 5 0.14250E-0 6 0.18500E-0 7 0.22500E-0 9 0.29750E-0 10 0.33000E-0 11 0.36000E-0 12 0.38750E-0 13 0.41250E-0 14 0.43500E-0 15 0.45500E-0 16 0.47250E-0 17 0.48750E-0 18 0.50000E-0 20 0.51750E-0 21 0.52250E-0	1	0.0000
3 0.50000E-03 4 0.97500E-03 5 0.14250E-07 6 0.18500E-07 7 0.22500E-07 9 0.29750E-07 10 0.33000E-07 11 0.36000E-07 12 0.38750E-07 13 0.41250E-07 14 0.43500E-07 15 0.45500E-07 16 0.47250E-07 17 0.48750E-07 18 0.50000E-07 19 0.51000E-07 20 0.51750E-07 21 0.52250E-07 21 0.5250E-07 21 0.5250E-0	2	0.52500E-07
4 0.97500E-03 5 0.14250E-03 6 0.18500E-03 7 0.22500E-03 8 0.26250E-03 9 0.29750E-03 10 0.33000E-03 11 0.36000E-03 12 0.38750E-03 13 0.41250E-03 14 0.43500E-03 15 0.45500E-03 16 0.47250E-03 17 0.48750E-03 18 0.50000E-03 19 0.51000E-03 20 0.51750E-03 21 0.52250E-03 21 0.5250E-03 21 0.5250E-	3	0.50000E-08
5 0.14250E-0' 6 0.18500E-0' 7 0.22500E-0' 8 0.26250E-0' 9 0.29750E-0' 10 0.33000E-0' 11 0.36000E-0' 12 0.38750E-0' 13 0.41250E-0' 14 0.43500E-0' 15 0.45500E-0' 16 0.47250E-0' 17 0.48750E-0' 18 0.50000E-0' 19 0.51000E-0' 20 0.51750E-0' 21 0.52250E-0'	4	0.97500E-08
6 0.18500E-0 7 0.22500E-0 8 0.26250E-0 9 0.29750E-0 10 0.33000E-0 11 0.36000E-0 12 0.38750E-0 13 0.41250E-0 14 0.43500E-0 15 0.45500E-0 16 0.47250E-0 17 0.48750E-0 18 0.50000E-0 19 0.51000E-0 20 0.51750E-0 21 0.52250E-0	5	0.14250E-07
7 0.22500E-0' 8 0.26250E-0' 9 0.29750E-0' 10 0.33000E-0' 11 0.36000E-0' 12 0.38750E-0' 13 0.41250E-0' 14 0.43500E-0' 15 0.45500E-0' 16 0.47250E-0' 17 0.48750E-0' 18 0.50000E-0' 19 0.51000E-0' 20 0.51750E-0' 21 0.52250E-0'	6	0.18500E-07
8 0.26250E-0' 9 0.29750E-0' 10 0.33000E-0' 11 0.36000E-0' 12 0.38750E-0' 13 0.41250E-0' 14 0.43500E-0' 15 0.45500E-0' 16 0.47250E-0' 17 0.48750E-0' 18 0.50000E-0' 19 0.51000E-0' 20 0.51750E-0' 21 0.52250E-0'	7	0.22500E-07
9 0.29750E-0 10 0.33000E-0 11 0.36000E-0 12 0.38750E-0 13 0.41250E-0 14 0.43500E-0 15 0.45500E-0 16 0.47250E-0 17 0.48750E-0 18 0.50000E-0 19 0.51000E-0 20 0.51750E-0 21 0.52250E-0	8	0.26250E-07
10 0.33000E-0' 11 0.36000E-0' 12 0.38750E-0' 13 0.41250E-0' 14 0.43500E-0' 15 0.45500E-0' 16 0.47250E-0' 17 0.48750E-0' 18 0.50000E-0' 19 0.51000E-0' 20 0.51750E-0' 21 0.52250E-0'	9	0.29750E-07
11 0.36000E-0' 12 0.38750E-0' 13 0.41250E-0' 14 0.43500E-0' 15 0.45500E-0' 16 0.47250E-0' 17 0.48750E-0' 18 0.50000E-0' 19 0.51000E-0' 20 0.51750E-0' 21 0.52250E-0'	10	0.33000E-07
12 0.38750E-0' 13 0.41250E-0' 14 0.43500E-0' 15 0.45500E-0' 16 0.47250E-0' 17 0.48750E-0' 18 0.50000E-0' 19 0.51000E-0' 20 0.51750E-0' 21 0.52250E-0'	11	0.36000E-07
13 0.41250E-0' 14 0.43500E-0' 15 0.45500E-0' 16 0.47250E-0' 17 0.48750E-0' 18 0.50000E-0' 19 0.51000E-0' 20 0.51750E-0' 21 0.52250E-0'	12	0.38750E-07
14 0.43500E-0' 15 0.45500E-0' 16 0.47250E-0' 17 0.48750E-0' 18 0.50000E-0' 19 0.51000E-0' 20 0.51750E-0' 21 0.52250E-0'	13	0.41250E-07
15 0.45500E-0' 16 0.47250E-0' 17 0.48750E-0' 18 0.50000E-0' 19 0.51000E-0' 20 0.51750E-0' 21 0.52250E-0'	14	0.43500E-07
16 0.47250E-0' 17 0.48750E-0' 18 0.50000E-0' 19 0.51000E-0' 20 0.51750E-0' 21 0.52250E-0'	15	0.45500E-07
17 0.48750E-0 18 0.50000E-0 19 0.51000E-0 20 0.51750E-0 21 0.52250E-0	16	0.47250E-07
18 0.50000E-0 19 0.51000E-0 20 0.51750E-0 21 0.52250E-0	17	0.48750E-07
19 0.51000E-0 20 0.51750E-0 21 0.52250E-0	18	0.50000E-07
20 0.51750E-0 21 0.52250E-0	19	0.51000E-07
21 0.52250E-0	20	0.51750E-07
	21	0.52250E-07

MAXIMUM ABSOLUTE VALUES NODE 2 VALUE 0.52500E-07

Stress:

***** POST1 ELEMENT NODAL STRESS LISTING *****

LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING X,Y,Z VALUES ARE IN GLOBAL COORDINATES

ELEMENT=	: 1	LINK180				
NODE	SX	SY	SZ	SXY	SYZ	SXZ
1	1.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3	1.0000	0.0000	0.0000	0.0000	0.0000	0.0000
ELEMENT=	= 2	LINK180				
NODE	SX	SY	SZ	SXY	SYZ	SXZ
3	0.95000	0.0000	0.0000	0.0000	0.0000	0.0000
4	0.95000	0.0000	0.0000	0.0000	0.0000	0.0000
ELEMENT=	= 3	LINK180				

FINITE ELEMENT ANALYSIS

NODE 4 5	SX 0.90000 0.90000	SY 0.0000 0.0000	SZ 0.0000 0.0000	SXY 0.0000 0.0000	SYZ 0.0000 0.0000	SXZ 0.0000 0.0000
ELEMENT=	= 4	LINK180				
NODE	SX	SY	SZ	SXY	SYZ	SXZ
5	0.85000	0.0000	0.0000	0.0000	0.0000	0.0000
6	0.85000	0.0000	0.0000	0.0000	0.0000	0.0000
		T TNULLOO				
ELEMENT:	= 5	LINKISU				
NODE	SX	SY	SZ	SXY	SYZ	SXZ
6	0.80000	0.0000	0.0000	0.0000	0.0000	0.0000
7	0.80000	0.0000	0.0000	0.0000	0.0000	0.0000
FLEMENT-	= 6	T.TNK180				
NODE	ev.	QV	97	QVV	QV7	977
NODE	0 75000	0 0000	0 0000	0 0000	0 0000	0 0000
/	0.75000	0.0000	0.0000	0.0000	0.0000	0.0000
8	0.75000	0.0000	0.0000	0.0000	0.0000	0.0000
ELEMENT=	= 7	LINK180				
NODE	SX	SY	SZ	SXY	SYZ	SXZ
8	0.70000	0.0000	0.0000	0.0000	0.0000	0.0000
9	0 70000	0 0000	0 0000	0 0000	0 0000	0 0000
2	0./0000	0.0000	0.0000	0.0000	0.0000	0.0000

***** POST1 ELEMENT NODAL STRESS LISTING *****

LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING X,Y,Z VALUES ARE IN GLOBAL COORDINATES

ELEMENT=	= 8	LINK180)			
NODE	SX	SY	SZ	SXY	SYZ	SXZ
9	0.65000	0.0000	0.0000	0.0000	0.0000	0.0000
10	0.65000	0.0000	0.0000	0.0000	0.0000	0.0000
ELEMENT=	= 9	LINK180)			
NODE	SX	SY	SZ	SXY	SYZ	SXZ
10	0.60000	0.0000	0.0000	0.0000	0.0000	0.0000
11	0.60000	0.0000	0.0000	0.0000	0.0000	0.0000
ELEMENT=	= 10	LINK180)			
NODE	SX	SY	SZ	SXY	SYZ	SXZ
11	0.55000	0.0000	0.0000	0.0000	0.0000	0.0000
12	0.55000	0.0000	0.0000	0.0000	0.0000	0.0000
ELEMENT=	= 11	LINK18()			
ELEMENT= NODE	= 11 SX	LINK18(SY) SZ	SXY	SYZ	SXZ
ELEMENT= NODE 12	= 11 SX 0.50000	LINK180 SY 0.0000) SZ 0.0000	SXY 0.0000	SYZ 0.0000	SXZ 0.0000
ELEMENT= NODE 12 13	= 11 SX 0.50000 0.50000	LINK18(SY 0.0000 0.0000	SZ 0.0000 0.0000	SXY 0.0000 0.0000	SYZ 0.0000 0.0000	SXZ 0.0000 0.0000
ELEMENT= NODE 12 13 ELEMENT=	= 11 SX 0.50000 0.50000 = 12	LINK18(SY 0.0000 0.0000 LINK18() SZ 0.0000 0.0000	SXY 0.0000 0.0000	SYZ 0.0000 0.0000	SXZ 0.0000 0.0000
ELEMENT= NODE 12 13 ELEMENT= NODE	= 11 SX 0.50000 0.50000 = 12 SX	LINK18(SY 0.0000 0.0000 LINK18(SY) SZ 0.0000 0.0000) SZ	SXY 0.0000 0.0000 SXY	SYZ 0.0000 0.0000 SYZ	SXZ 0.0000 0.0000 SXZ
ELEMENT= NODE 12 13 ELEMENT= NODE 13	= 11 SX 0.50000 0.50000 = 12 SX 0.45000	LINK18(SY 0.0000 0.0000 LINK18(SY 0.0000) SZ 0.0000 0.0000) SZ 0.0000	SXY 0.0000 0.0000 SXY 0.0000	SYZ 0.0000 0.0000 SYZ 0.0000	SXZ 0.0000 0.0000 SXZ 0.0000
ELEMENT= NODE 12 13 ELEMENT= NODE 13 14	= 11 SX 0.50000 0.50000 = 12 SX 0.45000 0.45000	LINK180 SY 0.0000 LINK180 SY 0.0000 0.0000) SZ 0.0000 0.0000) SZ 0.0000 0.0000	SXY 0.0000 0.0000 SXY 0.0000 0.0000	SYZ 0.0000 0.0000 SYZ 0.0000 0.0000	SXZ 0.0000 0.0000 SXZ 0.0000 0.0000
ELEMENT= NODE 12 13 ELEMENT= NODE 13 14 ELEMENT=	= 11 SX 0.50000 0.50000 = 12 SX 0.45000 0.45000 = 13	LINK180 SY 0.0000 LINK180 SY 0.0000 0.0000 LINK180) SZ 0.0000 0.0000) SZ 0.0000 0.0000	SXY 0.0000 0.0000 SXY 0.0000 0.0000	SYZ 0.0000 0.0000 SYZ 0.0000 0.0000	SXZ 0.0000 0.0000 SXZ 0.0000 0.0000
ELEMENT= NODE 12 13 ELEMENT= NODE 13 14 ELEMENT= NODE	= 11 SX 0.50000 0.50000 = 12 SX 0.45000 0.45000 0.45000 = 13 SX	LINK18(SY 0.0000 LINK18(SY 0.0000 0.0000 LINK18(SY) SZ 0.0000 0.0000 SZ 0.0000 0.0000 SZ	SXY 0.0000 0.0000 SXY 0.0000 0.0000 SXY	SYZ 0.0000 0.0000 SYZ 0.0000 0.0000 SYZ	SXZ 0.0000 0.0000 SXZ 0.0000 0.0000 SXZ
ELEMENT= NODE 12 13 ELEMENT= NODE 14 ELEMENT= NODE 14	= 11 SX 0.50000 0.50000 = 12 SX 0.45000 0.45000 = 13 SX 0.40000	LINK180 SY 0.0000 LINK180 SY 0.0000 0.0000 LINK180 SY 0.0000) SZ 0.0000 0.0000 SZ 0.0000 0.0000 SZ 0.0000	SXY 0.0000 0.0000 SXY 0.0000 0.0000 SXY 0.0000	SYZ 0.0000 0.0000 SYZ 0.0000 0.0000 SYZ 0.0000	SXZ 0.0000 0.0000 SXZ 0.0000 0.0000 SXZ 0.0000

FINITE ELEMENT ANALYSIS

ELEMENT	= 14	LINK180				
NODE 15 16	SX 0.35000 0.35000	SY 0.0000 0.0000	SZ 0.0000 0.0000	SXY 0.0000 0.0000	SYZ 0.0000 0.0000	SXZ 0.0000 0.0000
**** PO:	ST1 ELEMENT NO	ODAL STRESS I	JISTING ****	τ.		
LOAD STI TIME=	EP= 1 SU 1.0000	BSTEP= 1 LOAD CASE=	0			
THE FOL	LOWING X,Y,Z	VALUES ARE IN	I GLOBAL COOP	RDINATES		
ELEMENT	= 15	LINK180				
NODE 16	SX 0 30000	SY 0 0000	SZ	SXY	SYZ 0 0000	SXZ
17	0.30000	0.0000	0.0000	0.0000	0.0000	0.0000
ELEMENT	= 16	LINK180				
NODE	SX	SY	SZ	SXY	SYZ	SXZ
17 18	0.25000	0.0000	0.0000	0.0000	0.0000	0.0000
ELEMENT: NODE	= 17 SX	LINKI80 SY	97.	SXY	SY7	SX7
18	0.20000	0.0000	0.0000	0.0000	0.0000	0.0000
19	0.20000	0.0000	0.0000	0.0000	0.0000	0.0000
ELEMENT	= 18	LINK180				
NODE	SX	SY	SZ	SXY	SYZ	SXZ
20	0.15000	0.0000	0.0000	0.0000	0.0000	0.0000
FLEMENT	= 10	LINK180				
NODE	SX IS	SY	SZ	SXY	SYZ	SXZ
20	0.10000	0.0000	0.0000	0.0000	0.0000	0.0000
21	0.10000	0.0000	0.0000	0.0000	0.0000	0.0000
ELEMENT	= 20	LINK180				
NODE 21	SX 0 50000F-01	SY 0 0000	SZ	SXY	SYZ 0 0000	SXZ
2	0.50000E-01	0.0000	0.0000	0.0000	0.0000	0.0000

Ansys Plot: Displacement:

Conclusion:

Stress:

MATLAB code developed successfully and its results are verified using ANSYS analysis software.

Head of Department Mechanical Engineering AISSMS, COE, PUNE,

finash

	ALL INDIA SHRI SHIVAJI MEMORIAL SOCIETY'S					
			College of Engin	neering		
	ICT USAGE					
	Department: Mechanical Engineering					
Sr No	Name of Faculty	Subject	LOT TO L			
1	Dr. Bhanudas Dattatrava Bachchhav	Subject Manufacturing Engineering	ICT Tool	Link/URL		
	2	Manufacturing Processes	CDs videos	Borrowed through British Library Mumbai Encouraged students to see NPTFL videos		
11	Mr. Dinesh Yashwant Dhande	Computer Aided Machine Drawing	YouTube	https://www.youtube.com/watch?v=jgrl4JHmT0g		
			1 m	https://www.youtube.com/watch?y=S9fshEGLmtA		
				https://www.youtube.com/watch?v=t4wwBBdcM2o		
				https://www.youtube.com/watch?v=CMyFY1gtK7A		
				https://www.youtube.com/watch?y=hpy38OBIbBI		
				https://www.youtube.com/watch?v=wvVd8XR3AdE		
			- P	https://www.youtube.com/watch?v=c_WcrGhJK9g		
				https://www.youtube.com/watch?v=nMXgcWrgMfQ		
a - 5				https://www.youtube.com/watch?v=1u4Hmeg-Efy&t=10s		
		14		https://www.youtube.com/watch?v=wcv_zigi/Ak		
				https://www.youtube.com/watch?v=DTjwgOT5Iak		
				https://www.youtube.com/watch?v=IIDnXrbFiII1&t=1s		
S				https://www.youtube.com/watch?v=-kK5v474mXF&t=156s		
				https://www.youtube.com/watch?y=Zg0Y_5F-U7M		
				https://www.youtube.com/watch?v=JUTGmwMWciY		
				https://www.youtube.com/watch?v=JPJ2WXOCvyM		
				https://www.youtube.com/watch?v=sv-miFmurO4		
				https://www.youtube.com/watch?v=1DSJ795_3i0		
				https://www.youtube.com/watch?v=e2cAWcWPUyw		
19	Me Ashwini Tanaii Thomharo (Tondo)	There of Markins II		https://www.youtube.com/watch?v=bv21QTKISuc		
10	Ms. Margi Pritesh Shah (Chokshi)	CAD/CAM and Automation	YouTube	https://www.youtube.com/watch?y=K4JhruinbWc		
		CAD/CAW and Automation	Silde snare	1.https://www.slideshare.net/MargiChokshi/automation-83102238?qid=f8057617-89b0-4ffb-baa1-ab55ae1 2f968&v=&b=&from search=1		
				2.https://www.slideshare.net/MargiChokshi/roboticampautomation?gid=f8057617-89b0-4ffb-baa1-ab55ae 12f968&v=&b=& from_search=2		
20						
21	Mr. Yogesh Balwant Karandikar	Machine Design	NPTEL Video /	http://nptel.ac.in/courses/112105124/ http://nptel.ac.in/downloads/112105125/		
			PDF	http://nptel.ac.in/courses/112106137/		
			P	http://www.nptelvideos.in/2012/12/design-of-machine-elements.html		
27	Mr. Ganesh Bhoju Narkhede	Strength of Materials	YouTube	http://web.ntd.ac.in/~nirani/MEL311.pdf https://www.voutube.com/watch?v=GkEovs7C4Vc.http://optel.ac.in/courses/112107147/1		
				http://nptel.ac.in/courses/112107147/2 http://nptel.ac.in/courses/112106180/13		
				http://nptel.ac.in/courses/112106180/14 http://nptel.ac.in/courses/112107147/35		
				http://nptel.ac.in/courses/112101095/7		
28	Mr. Vipin Suresh Wagare	Numerical Methods &	NPTEL video & pdf	1. http://nptel.ac.in/courses/122102009/ -		
		Optimization		2. http://www.iitg.ac.in/kartha/CE601/LectureSlides.htm - IIT Guwahati Useful PDF for Numerical		
20	Ma Culicto I aurora Disalara			Method		
29	Ms. Sujata Laxman Patekar	Applied Computer aided Engineering	Slide Share	https://www.slideshare.net/SujataPatekarJadhav/rapid-prototyping-82095894?qid=f59c7f7b-740b-4ce6-81		
33	Mr. Girishkumar Nagnath Jagdale		NPTEL	http://nptel.ac.in/courses/112105124/18 http://nptel.ac.in/courses/112105124/19		
				http://nptel.ac.in/courses/112105124/20 http://nptel.ac.in/courses/112105124/21		
		Design of Simple Machine		http://nptel.ac.in/courses/112105124/27 http://nptel.ac.in/courses/112105124/28		
		Elements – 1		http://nptel.ac.in/courses/112105124/24 http://nptel.ac.in/courses/112105124/35		
				http://nptel.ac.in/courses/112105124/36 https://www.youtube.com/watch?v=qUr4qZ4gD_w		
34	Ms. Sonali Shrikant Patil			nicosni www.youtube.com/watch1v=SEQK11 Qilv11		
35	Mr. Sumit Madhukar Sakhare-Chougule			https://onlinecourses.pptel.ac.in/noc17_me22/unit?unit=43&lesson=48		
				https://onlinecourses.nptel.ac.in/noc17_me22/unit?unit=52&lesson=54		
			÷	https://onlinecourses.nptel.ac.in/noc17_me22/unit?unit=14&lesson=16		
		64 (A)		https://onlinecourses.nptel.ac.in/noc17_me22/unit?unit=59&lesson=63		
				https://onlinecourses.nptel.ac.in/noc17_me22/unit?unit=52&lesson=55		
				www.me.udel.edu/~prasad/meeg331/labs/iet.pd		
				https://onlinecourses.nptel.ac.in/noc17_me22/unit?unit=59&lesson=64		
		1 and 1		https://onlinecourses.nptel.ac.in/noc17 me22/unit?unit=43&lesson=46		
= = 3				https://onlinecourses.nptel.ac.in/noc17_me22/unit?unit=59&lesson=65		
				https://onlinecourses.nptel.ac.in/noc17_me22/unit?unit=68&lesson=71		
				https://onlinecourses.nptel.ac.in/noc17_me22/unit?unit=68&lesson=72		
				https://onlinecourses.nptel.ac.in/noc17 me22/unit?unit=59&lesson=62		
				https://onlinecourses.nptel.ac.in/noc17_me22/unit?unit=59&lesson=65		
		*		https://onlinecourses.nptel.ac.in/noc17_me22/unit?unit=68&lesson=70		
				https://onlinecourses.nptel.ac.in/noc17_me22/unit?unit=14&lesson=17		

18-19. ILT 18-19.

hinash

Head of Department Mechanical Engineering AISSMS, COE, PUNE,